
Deep Learning for Data Science
DS 542

Lecture 06
Fitting Models

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com


Announcements

● SCC tutorial at today’s discussion section
○ Don’t miss it!
○ 3:35PM @ CAS 313



Recap: Loss Functions

● Originally the functions we minimize when training our models
○ Ad-hoc preferences on error tradeoffs if we cannot fit perfectly

● Last lecture
○ Least squared error as a real loss function for lost profits in industry
○ Maximum likelihood estimation to derive loss functions based on problem structure and 

modeling assumptions



Recap: Maximum Likelihood Estimation

1. Think of models as predicting probability distributions, not point estimates.
2. Pick model parameters maximizing the likelihood of the observed data.

a. 𝜙 ̂= argmax𝜙 Πi Pr(yi | f[x,𝜙])
b. 𝜙 ̂= argmax𝜙 log (Πi Pr(yi | f[x,𝜙]))       log is motonic, avoids underflow
c. 𝜙 ̂= argmax𝜙 Σi log Pr(yi | f[x,𝜙]))         log distributes over product
d. 𝜙̂ = argmin𝜙 Σi -log Pr(yi | f[x,𝜙]))         switch to minimizing by flipping signs
e. L[𝜙] ⁇ Σi -log Pr(yi | f[x,𝜙])                  maybe? but might simplify further…

^^ loss function is what we minimize, but often can simplify more based 
on problem and choices of probability distributions



2. Maximum likelihood estimation equivalent 
to least squares.

Recap: Regressing Gaussian Distribution

1. Model outputs a normal distribution 
parameterized by μ and σ.

Least squares!



Recap: Regressing Binary/Multiclass Classification

Two issues intertwined

● Derivation of loss function
● Finagling arbitrary neural network output into probability distributions.

○ This part is somewhat arbitrary, but these ways tend to work…
○ Both equations would simplify to a cross-entropy formula without that finagling



Recap: Regressing a Binary Output

1. Model outputs a Bernoulli distribution 
parameterized by 𝜆 after using sigmoid to 
get probabilities from f[].

2. Maximum likelihood estimation equivalent 
to binary cross-entropy loss.

Cross-entropy losses penalize with the negative 
log of the modeled probability, so low predicted 
probabilities give high losses.



Recap: Regressing Multiple Classes

Model has one output per class and uses 
softmax to map to get clean probabilities.

2. Maximum likelihood estimation equivalent 
to multiclass cross-entropy loss.

Biggest term? Negative log of numerator



Fitting models
● Code Preview
● Math overview
● Gradient descent algorithm

○ Linear regression example
○ Gabor model example

● Stochastic gradient descent
● Momentum
● Adam



Code Preview



The Magic Code



Loss function
● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad 
model is:

   or for short:

Returns a scalar that is smaller 
when model maps inputs to 
outputs better



Training
● Loss function:

● Find the parameters that minimize the loss:

Returns a scalar that is smaller 
when model maps inputs to 
outputs better



Example:  1D Linear regression loss 
function

Loss function:

“Least squares loss function”



Example: 1D Linear regression training



Example: 1D Linear regression training



Example: 1D Linear regression training



Example: 1D Linear regression training



Example: 1D Linear regression training

This technique is known as gradient descent



Fitting models
● Code Preview
● Math overview
● Gradient descent algorithm

○ Linear regression example
○ Gabor model example

● Stochastic gradient descent
● Momentum
● Adam



Definitions
 





 

Also slope, m,  of a 
tangential line 
evaluated at that point.

 



 

Which direction (+/-) 
do we have to go 
when slope > 0?

 



 

The 
slope/steepness/gradien
t depends on where we 
evaluate it



 

Which direction (+/-) 
do we have to go 
when slope < 0?



 

The 
slope/steepness/gradien
t depends on where we 
evaluate it



Gradient

Partial derivative, e.g. rate of 
change,  w.r.t. each input 
(independent) variable.

Geometric Interpretation: Each variable is a unit 
vector, and then
• gradient is the rate of change (increase) in the 

direction of each unit vector
• vector sum points to the overall direction of 

greatest change (increase)



Fitting models
● Code Preview
● Maths overview
● Gradient descent algorithm

○ Linear regression example
○ Gabor model example

● Stochastic gradient descent
● Momentum
● Adam



Gradient descent algorithm

 



Fitting models
● Maths overview
● Gradient descent algorithm

○ Linear regression example
○ Gabor model example

● Stochastic gradient descent
● Momentum
● Adam



Gradient descent

Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters



Gradient descent

Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters



Gradient descent

Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters



Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters

Gradient descent



Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters

Step 2:  Update parameters according to 
rule

 

Gradient descent



Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters

Step 2:  Update parameters according to 
rule

 

Gradient descent



Gradient descent



Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters

Step 2:  Update parameters according to 
rule

 

Gradient descent



Step 1:  Compute derivatives (slopes of function) 
with
Respect to the parameters

Step 2:  Update parameters according to 
rule

 

Gradient descent



Gradient descent



Gradient descent



Gradient descent



We can also search for the optimal 
step size at each iteration using 
Line Search

 

Line Search



Line Search (bracketing)

a b c d a b c d



Line Search (bracketing)
● For each iteration you are evaluating loss four times
● Can be costly for more complex data types and loss calculations (e.g. image 

segmentation, ….)
● Not typically used for computer vision

for large problems of any sort
○ But motivates heuristics changing learning rate

during the training process.

a b c d



Fitting models
● Code Preview
● Maths overview
● Gradient descent algorithm

○ Linear regression example
○ Gabor model example

● Stochastic gradient descent
● Momentum
● Adam



Gabor Model

Linear model loss functions are always convex

Gabor modes are a more complex (non-convex) model that we can still visualize 
in 2D and 3D…

● Developed for image processing
● Looks for a signal of a particular frequency and alignment.
● Still differentiable, so we can reason about it similarly to linear models and 

neural networks.



Gabor Model (with Envelope)



Gabor model

 



Toy Dataset and Gabor model





● Gradient descent gets to the global 
minimum if we start in the right “valley”

● Otherwise, descends to a local 
minimum

● Or get stuck near a saddle point



Fitting models
● Code Preview
● Maths overview
● Gradient descent algorithm

○ Linear regression example
○ Gabor model example

● Stochastic gradient descent
● Momentum
● Adam



IDEA:  add noise, save 
computation

● Stochastic gradient descent

● Compute gradient based on 
only a subset of points – a 
mini-batch

● Work through dataset 
sampling without replacement

● One pass though the data is 
called an epoch 



Batches and Epochs 
(Ex. 30 sample dataset, batch size 5)

[ 0  1  2  3 4 5  6  7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29]

[27 15 23 17 8 9 28 24 12 0  4 16  5 13 11 22  1  2 25  3 21 26 18 29 20  7 10 14 19  6]

 

Epoch # 0----------- 

Step 0, Batch # 0, Batch Range [0 1 2 3 4], Batch index: [27 15 23 17 8] 

Step 1, Batch # 1, Batch Range [5 6 7 8 9], Batch index: [ 9 28 24 12 0] 

Step 2, Batch # 2, Batch Range [10 11 12 13 14], Batch index: [ 4 16 5 13 11] 

Step 3, Batch # 3, Batch Range [15 16 17 18 19], Batch index: [22 1 2 25 3] 

Step 4, Batch # 4, Batch Range [20 21 22 23 24], Batch index: [21 26 18 29 20] 

Step 5, Batch # 5, Batch Range [25 26 27 28 29], Batch index: [ 7 10 14 19 6] 

Epoch # 1----------- 

Step 6, Batch # 0, Batch Range [0 1 2 3 4], Batch index: [27 15 23 17 8] 

Step 7, Batch # 1, Batch Range [5 6 7 8 9], Batch index: [ 9 28 24 12 0] 

Step 8, Batch # 2, Batch Range [10 11 12 13 14], Batch index: [ 4 16 5 13 11] 

Step 9, Batch # 3, Batch Range [15 16 17 18 19], Batch index: [22 1 2 25 3] 

… 

Data Indices
Permute

Batch Size 5

30
/5

 =
 6

 b
at

ch
es

 
p

er
 e

p
o

ch



●  





Properties of SGD
● Can escape from local minima
● Adds noise, but still sensible updates as based on part of data
● Still uses all data equally
● Less computationally expensive
● Seems to find better solutions

● Doesn’t converge in traditional sense
● Learning rate schedule – decrease learning rate over time



Simple Gradient Descent

Think of analogy of a ball rolling 
down a hill.

Would it follow path like on the 
left?

Why/Why not? What’s missing?



Fitting models
● Code Preview
● Maths overview
● Gradient descent algorithm
● Linear regression example
● Gabor model example
● Stochastic gradient descent
● Momentum
● Adam



● Weighted sum of this gradient and previous gradient
● Not only influenced by gradient
● Changes more slowly over time

Momentum

Still in batches.



Without and With Momentum

Without Momentum, Loss = 
1.31

With Momentum, Loss = 
0.96





Nesterov accelerated momentum

● Momentum smooths out gradient of 
current location

● Alternative, smooth out gradient of where 
we think we will be!

Still in batches.



Nesterov Momentum

Without Momentum, Loss = 
1.31

With Momentum, Loss = 
0.96

Nesterov Momentum, Loss = 
0.80



Fitting models
● Code Preview
● Maths overview
● Gradient descent algorithm
● Linear regression example
● Gabor model example
● Stochastic gradient descent
● Momentum
● Adam



The challenge with fixed step sizes

Too small and it will 
converge slowly, but 
eventually get there.

Too big and it will move 
quickly but might bounce 
around minimum or away.

Moves quickly in 
one dimension 
but slowly in the 
other.



Solution Part 1: Normalized gradients

 

 



Solution Part 1: Normalized gradients

 

 

Dividing by the positive root, so normalized to 1 
and all that is left is the sign.



Solution Part 1: Normalized gradients

● Measure mean and pointwise squared gradient

● Normalize:



Solution Part 1: Normalized gradients

● algorithm moves downhill a fixed distance 
α along each coordinate

● makes good progress in both directions 

● but will not converge unless it happens to 
land exactly at the minimum



Adaptive moment estimation (Adam)

● Compute mean and pointwise 
squared gradients with momentum

● Boost momentum near start of the 
sequence since they are initialized to 
zero

● Update the parameters

 

 



Adaptive moment estimation (Adam)



Other advantages of ADAM
● Gradients can diminish or grow deep into networks. ADAM balances out 

changes across depth of layers.
● Adam is less sensitive to the initial learning rate so it doesn’t need complex 

learning rate schedules.



Additional Hyperparameters
● Choice of learning algorithm: SGD, Momentum, Nesterov Momentum, ADAM
● Learning rate – can be fixed, on a schedule or loss dependent
● Momentum Parameters



Recap
● Gradient Descent

○ Find a minimum for non-convex, complex loss functions
● Stochastic Gradient Descent

○ Save compute by calculating gradients in batches, which adds some noise to the search
● (Nesterov) Momentum

○ Add momentum to the gradient updates to smooth out abrupt gradient changes
● ADAM

○ Correct for imbalance between gradient components while providing some momentum



Coming Up Next

● Gradients and initialization
○ Backpropagation process - efficient calculation of gradients
○ Learning rates - how aggressively do we use gradients
○ Initialization strategies - avoid bad initializations crippling learning

● Measuring Performance
○ Sounds easy - just plot losses?
○ Some subtleties to avoid overfitting
○ Some well-documented patterns where you think you are done prematurely

● Regularization
○ Tactics to reduce the generalization gap between training and test performance.
○ Often ad-hoc or heuristics to start, but slowly grounding these with theory.

● Following material will be more specific to application areas…



Feedback?


